March 29, 2025 This article has been reviewed according to Science X's editorial process and policies . Editors have highlightedthe following attributes while ensuring the content's credibility: fact-checked peer-reviewed publication trusted source proofread by Rice University Scientists have long sought to unravel the mysteries of strange metals—materials that defy conventional rules of electricity and magnetism. Now, a team of physicists at Rice University has made a breakthrough in this area using a tool from quantum information science.
Their study, published recently in Nature Communications , reveals that electrons in strange metals become more entangled at a crucial tipping point, shedding new light on the behavior of these enigmatic materials. The discovery could pave the way for advances in superconductors with the potential to transform energy use in the future. Unlike conventional metals such as copper or gold that have well-understood electrical properties, strange metals behave in much more complex ways, making their inner workings beyond the realm of textbook description.
Led by Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, the research team turned to quantum Fisher information (QFI), a concept from quantum metrology used to measure how electron interactions evolve under extreme conditions, to find answers.
Their research shows that electron entanglement, a fundamental quantum phenomenon, peaks at a quantum critical point : the .






































